EXCALIBUR: A Multi-Function Fuze For a Multi-Purpose Warhead

Presentation Outline

- Excalibur Development History
- Application
- Fuze Design Goals
- Design Approach

 - ♦ Proximity (HOB) Sensor
- System Integration

Excalibur Development History

- Raytheon Developed XM982 GPS-Guided Munition
 - ♦ Originally Intended as DPICM Round
 - **♦ Equipped with KDI S&A**
- Lethality Study Showed the Benefits of Unitary Warhead
 - ♦ Decision Was Made to Convert XM982 to Unitary
 - ♦ Proximity Fuze Provides Maximum Lethality

Excalibur Development History

- > KDI Selected To Design HOB Sensor
 - **♦ Established Member of Design Team**
 - ♦ Strong Background in Proximity Fuze Design
 - ♦ Several Successful Prox Programs
 - M734A1, MOFA (Army)
 - MK417, MK418, MK404 (Navy)
 - FMU-160/B (AFSOC)

Application

XM982

XCALIBUR

Concept of Operations

Unitary Warhead Proposal - 1.0 Introduction

Our Unitary Warhead XM982 Is Designed To Meet User Needs

Fuze Design Goals

- > Selectable Modes: HOB, PD, PD-Delay
- Tight HOB Control
 - ♦ Nominal HOB = 15 ft
- High Reliability
- Maximum Commonality to Existing Designs
 - ♦ Proven Reliability
 - **♦ Reduced Risk**
 - ♦ Reduced Cost

FSA Design Approach

XM982

- > Similar to XM982 FSA

 - ♦ Transfer Lead Charge Added
 - **♦ Electronics Integrated With Mechanical Assembly**
 - ♦ FPGA-Based Logic
 - → Requires Setback (1200 g's Min)
 - **♦ Second Environment Under Study**
 - - PD Sensor Located in FSA

FSA

XM982

HOB Sensor Design Approach

- Antenna
 - ♦ Circular Patch
 - Easy to Manufacture
 - Broadband
 - Low Cost
 - Rugged
 - Currently Used on FMU-160/B
- > Radome
 - Material (PEEK) Selected for Mechanical and RF Properties

HOB Sensor Design Approach

- > RF Front End

 - ♦ Developed For M734A1 Multi-Option Fuze for Mortars
 - ♦ Successfully Deployed on FMU-160/B
 - **♦ Single Chip System**
 - Extremely Rugged
 - Miniature
 - Reliable

HOB Sensor Design Approach

XM982

- Signal Processor
 - ♦ Used on M734A1 and FMU-160/B
 - ♦ Utilizes DDR Technology
 - Accurate HOB Control
 - Robust Anti-jamming Performance
- Highly Integrated
 - **♦ Single Chip Solution**
 - ♦ High Reliability
 - **♦ Low Cost**

HOB Sensor Cross Section

XM982

Interface

- > 9-Pin Connector
- > Carries Power, Target Detect, and Test Signals
- > Easy to Assemble

KDI Precision Products, Inc.

HOB Sensor

XM982

System Integration

- Mission Data Stored in Mission Computer
 - GPS Coordinates & Fuze Operating Mode
- Mission Computer Interfaces With FSA
 - ♦ Supplies Operating Mode Information
- Power Conditioning Unit (PCU) Supplies Power For HOB Sensor
- FSA Receives Prox Fire Command From HOB Sensor

System Block Diagram

Excalibur Projectile

